Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 20(24): 7259-70, 2001 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-11743002

RESUMO

Mobile group II introns encode reverse transcriptases that also function as intron-specific splicing factors (maturases). We showed previously that the reverse transcriptase/maturase encoded by the Lactococcus lactis Ll.LtrB intron has a high affinity binding site at the beginning of its own coding region in an idiosyncratic structure, DIVa. Here, we identify potential secondary binding sites in conserved regions of the catalytic core and show via chemical modification experiments that binding of the maturase induces the formation of key tertiary interactions required for RNA splicing. The interaction with conserved as well as idiosyncratic regions explains how maturases in some organisms could evolve into general group II intron splicing factors, potentially mirroring a key step in the evolution of spliceosomal introns.


Assuntos
Íntrons , Splicing de RNA , DNA Polimerase Dirigida por RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Aldeídos/química , Sequência de Bases , Butanonas , Iodo/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/química
2.
Nat Biotechnol ; 19(12): 1162-7, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11731786

RESUMO

Mobile group II introns can be retargeted to insert into virtually any desired DNA target. Here we show that retargeted group II introns can be used for highly specific chromosomal gene disruption in Escherichia coli and other bacteria at frequencies of 0.1-22%. Furthermore, the introns can be used to introduce targeted chromosomal breaks, which can be repaired by transformation with a homologous DNA fragment, enabling the introduction of point mutations. Because of their wide host range, mobile group II introns should be useful for genetic engineering and functional genomics in a wide variety of bacteria.


Assuntos
Escherichia coli/genética , Técnicas de Transferência de Genes , Genes Bacterianos , Engenharia Genética , Vetores Genéticos , Íntrons , Sequência de Bases , Southern Blotting , Cromossomos/genética , Códon de Terminação , Biblioteca Gênica , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Mutação Puntual , Reação em Cadeia da Polimerase , Recombinação Genética
3.
Proc Natl Acad Sci U S A ; 98(23): 13207-12, 2001 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-11687644

RESUMO

Group II introns, the presumed ancestors of nuclear pre-mRNA introns, are site-specific retroelements. In addition to "homing" to unoccupied sites in intronless alleles, group II introns transpose at low frequency to ectopic sites that resemble the normal homing site. Two general mechanisms have been proposed for group II intron transposition, one involving reverse splicing of the intron RNA directly into an ectopic DNA site, and the other involving reverse splicing into a site in RNA followed by reverse transcription and integration of the resulting cDNA by homologous recombination. Here, by using an "inverted-site" strategy, we show that the yeast mtDNA group II intron aI1 retrotransposes by reverse splicing directly into an ectopic DNA site. This same mechanism could account for other previously described ectopic transposition events in fungi and bacteria and may have contributed to the dispersal of group II introns into different genes.


Assuntos
DNA Fúngico/genética , Íntrons , Retroelementos , Saccharomyces cerevisiae/genética , Sequência de Bases , Primers do DNA , Mutação , Reação em Cadeia da Polimerase , RNA Fúngico/genética
4.
J Mol Biol ; 309(2): 361-86, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11371159

RESUMO

Group II intron mobility occurs by a target DNA-primed reverse transcription mechanism in which the intron RNA reverse splices directly into one strand of a double-stranded DNA target site, while the intron-encoded protein cleaves the opposite strand and uses it as a primer to reverse transcribe the inserted intron RNA. The group II intron endonuclease, which mediates this process, is an RNP particle that contains the intron-encoded protein and the excised intron RNA and uses both cooperatively to recognize DNA target sequences. Here, we analyzed the interaction of the Lactococcus lactis Ll.LtrB group II intron endonuclease with its DNA target site by DNA footprinting and modification-interference approaches. In agreement with previous mutagenesis experiments showing a relatively large target site, DNase I protection extends from position -25 to +19 from the intron-insertion site on the top strand and from -28 to +16 on the bottom strand. Our results suggest that the protein first recognizes a small number of specific bases in the distal 5'-exon region of the DNA target site via major-groove interactions. These base interactions together with additional phosphodiester-backbone interactions along one face of the helix promote DNA unwinding, enabling the intron RNA to base-pair to DNA top-strand positions -12 to +3 for reverse splicing. Notably, DNA unwinding extends to at least position +6, somewhat beyond the region that base-pairs with the intron RNA, but is not dependent on interaction of the conserved endonuclease domain with the 3' exon. Bottom-strand cleavage occurs after reverse splicing and requires recognition of a small number of additional bases in the 3' exon, the most critical being T+5 in the now single-stranded downstream region of the target site. Our results provide the first detailed view of the interaction of a group II intron endonuclease with its DNA target site.


Assuntos
Pegada de DNA , DNA/metabolismo , Endonucleases/metabolismo , Íntrons/genética , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Ribonucleoproteínas/metabolismo , Adenina/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/genética , Metilação de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Desoxiuridina/metabolismo , Endonucleases/química , Endonucleases/genética , Éxons/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Desnaturação de Ácido Nucleico , Permanganato de Potássio/metabolismo , Estrutura Terciária de Proteína , Splicing de RNA/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Especificidade por Substrato
5.
J Mol Biol ; 308(2): 165-90, 2001 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-11327760

RESUMO

The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron's catalytic core. Previous studies suggested a model in which the protein binds first to the intron's P4-P6 domain, and then makes additional contacts with the P3-P9 domain to stabilize the two domains in the correct relative orientation to form the intron's active site. Here, we analyzed the interaction of CYT-18 with a small RNA (P4-P6 RNA) corresponding to the isolated P4-P6 domain of the N. crassa mitochondrial large subunit ribosomal RNA intron. RNA footprinting and modification-interference experiments showed that CYT-18 binds to this small RNA around the junction of the P4-P6 stacked helices on the side opposite the active-site cleft, as it does to the P4-P6 domain in the intact intron. The binding is inhibited by chemical modifications that disrupt base-pairing in P4, P6, and P6a, indicating that a partially folded structure of the P4-P6 domain is required. The temperature-dependence of binding indicates that the interaction is driven by a favorable enthalpy change, but is accompanied by an unfavorable entropy change. The latter may reflect entropically unfavorable conformational changes or decreased conformational flexibility in the complex. CYT-18 binding is inhibited at > or =125 mM KCl, indicating a strong dependence on phosphodiester-backbone interactions. On the other hand, Mg(2+) is absolutely required for CYT-18 binding, with titration experiments showing approximately 1.5 magnesium ions bound per complex. Metal ion-cleavage experiments identified a divalent cation-binding site near the boundary of P6 and J6/6a, and chemical modification showed that Mg(2+) binding induces RNA conformational changes in this region, as well as elsewhere, particularly in J4/5. Together, these findings suggest a model in which the binding of Mg(2+) near J6/6a and possibly at one additional location in the P4-P6 RNA induces formation of a specific phosphodiester-backbone geometry that is required for CYT-18 binding. The binding of CYT-18 may then establish the correct structure at the junction of the P4/P6 stacked helices for assembly of the P3-P9 domain. The interaction of CYT-18 with the P4-P6 domain appears similar to the TyrRS interaction with the D-/anticodon arm stacked helices of tRNA(Tyr).


Assuntos
Íntrons/genética , Metais/metabolismo , Mitocôndrias/enzimologia , Neurospora crassa/enzimologia , RNA Fúngico/química , RNA Fúngico/metabolismo , Tirosina-tRNA Ligase/metabolismo , Sequência de Bases , Cátions/metabolismo , Cátions/farmacologia , Dietil Pirocarbonato/metabolismo , Entropia , Etilnitrosoureia/metabolismo , Iodo/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Metais/farmacologia , Mitocôndrias/genética , Dados de Sequência Molecular , Neurospora crassa/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Maleabilidade , Cloreto de Potássio/metabolismo , Cloreto de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , RNA Fúngico/genética , RNA de Transferência de Tirosina/química , RNA de Transferência de Tirosina/genética , RNA de Transferência de Tirosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo , Temperatura
6.
J Mol Biol ; 307(1): 75-92, 2001 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-11243805

RESUMO

The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.


Assuntos
Íntrons/fisiologia , Neurospora crassa/enzimologia , Splicing de RNA/fisiologia , Tirosina-tRNA Ligase/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Deleção de Genes , Cinética , Dados de Sequência Molecular , Neurospora crassa/genética , Conformação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Tirosina/análogos & derivados , Tirosina/metabolismo , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética
7.
Mol Cell Biol ; 20(22): 8432-46, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11046140

RESUMO

The yeast mitochondrial DNA group II introns aI1 and aI2 are retroelements that insert site specifically into intronless alleles by a process called homing. Here, we used patterns of flanking marker coconversion in crosses with wild-type and mutant aI2 introns to distinguish three coexisting homing pathways: two that were reverse transcriptase (RT) dependent (retrohoming) and one that was RT independent. All three pathways are initiated by cleavage of the recipient DNA target site by the intron-encoded endonuclease, with the sense strand cleaved by partial or complete reverse splicing, and the antisense strand cleaved by the intron-encoded protein. The major retrohoming pathway in standard crosses leads to insertion of the intron with unidirectional coconversion of upstream exon sequences. This pattern of coconversion suggests that the major retrohoming pathway is initiated by target DNA-primed reverse transcription of the reverse-spliced intron RNA and completed by double-strand break repair (DSBR) recombination with the donor allele. The RT-independent pathway leads to insertion of the intron with bidirectional coconversion and presumably occurs by a conventional DSBR recombination mechanism initiated by cleavage of the recipient DNA target site by the intron-encoded endonuclease, as for group I intron homing. Finally, some mutant DNA target sites shift up to 43% of retrohoming to another pathway not previously detected for aI2 in which there is no coconversion of flanking exon sequences. This new pathway presumably involves synthesis of a full-length cDNA copy of the inserted intron RNA, with completion by a repair process independent of homologous recombination, as found for the Lactococcus lactis Ll.LtrB intron. Our results show that group II intron mobility can occur by multiple pathways, the ratios of which depend on the characteristics of both the intron and the DNA target site. This remarkable flexibility enables group II introns to use different recombination and repair enzymes in different host cells.


Assuntos
Íntrons , Mitocôndrias/genética , Leveduras/genética , Sequência de Bases , Cruzamentos Genéticos , Reparo do DNA/fisiologia , DNA Complementar/biossíntese , Endonucleases/genética , Endonucleases/metabolismo , Éxons , Dados de Sequência Molecular , Mutação , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Recombinação Genética , Retroelementos
8.
Nucleic Acids Res ; 28(13): 1514-24, 2000 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-11001704

RESUMO

We characterized an unusual tRNA-like sequence that had been found inserted in suppressive variants of the mitochondrial retroplasmid of Neurospora intermedia strain Varkud. We previously identified two forms of the tRNA-like sequence, one of 64 nt (TRL-64)and the other of 78 nt (TRL-78) containing a 14-nt internal insertion in the anticodon stem at a position expected for a nuclear tRNA intron. Here, we show that TRL-78 is encoded in Varkud mitochondrial (mt)DNA within a 7 kb sequence that is not present in Neurospora crassa wild-type 74A mtDNA. This 7-kb insertion also contains a perfectly duplicated tRNA(Trp)gene, segments of several mitochondrial plasmids and numerous GC-rich pallindromic sequences that are repeated elsewhere in the mtDNA. The mtDNA-encoded copy of TRL-78 is transcribed and apparently undergoes 5'- and 3'-end processing and 3' nucleotide addition by tRNA nucleotidyl transferase to yield a discrete tRNA-sized molecule. However, the 14 nt intron-like sequence in TRL-78, which is missing in the TRL-64 form, is not spliced detectably in vivo or in vitro. Our results show that TRL-78 is an unusual tRNA-like species that could be incorporated into suppressive retroplasmids by the same reverse transcription mechanism used to incorporate mt tRNAs. The tRNA-like sequence may have been derived from an intron-containing nuclear tRNA gene or it may serve some function, like tmRNA. Our results suggest that mtRNAs or tRNA-like species may be integrated into mtDNA via reverse transcription, analogous to SINE elements in animal cells.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mutagênese Insercional/genética , Neurospora/genética , Plasmídeos/genética , RNA de Transferência de Triptofano/genética , Sequência de Bases , Southern Blotting , Clonagem Molecular , DNA Fúngico/genética , Desoxirribonuclease EcoRI , Variação Genética/genética , Íntrons/genética , Dados de Sequência Molecular , Neurospora crassa/genética , Conformação de Ácido Nucleico , Mapeamento Físico do Cromossomo , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência de Triptofano/química , RNA de Transferência de Triptofano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
9.
J Mol Biol ; 301(2): 265-83, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10926509

RESUMO

We used an Escherichia coli genetic assay based on the phage T4 td intron to test the ability of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) to suppress mutations that cause structural defects around its binding site in the P4-P6 domain of the group I intron catalytic core. We analyzed all possible combinations of nucleotides at either P4 bp-1 or P6 bp-1, which together form the junction of the P4-P6 stacked helices, and looked for synergistic effects in double mutants. Most mutations at either position inhibit self-splicing, but can be suppressed by CYT-18. CYT-18 can compensate efficiently for mutations that disrupt base-pairing at either P4 bp-1 or P6 bp-1, for mutations at P6 bp-1 that disrupt the base-triple interaction with J3/4-3, and for nucleotide substitutions at either position that are predicted to be suboptimal for base stacking, based on the analysis of DNA four-way junctions. However, CYT-18 has difficulty suppressing combinations of mutations at P4 bp-1 and P6 bp-1 that simultaneously disrupt base-pairing and base stacking. Thermal denaturation and Fe(II)-EDTA analysis showed that mutations at the junction of the P4-P6 stacked helices lead to grossly impaired tertiary-structure formation centered in the P4-P6 domain. CYT-18-suppressible mutants bind the protein with K(d) values up to 79-fold higher than that for the wild-type intron, but in all cases tested, the k(off) value for the complex remains within twofold of the wild-type value, suggesting that the binding site can be formed properly and that the increased K(d) value reflects primarily an increased k(on) value for the binding of CYT-18 to the misfolded intron. Our results indicate that the P4/P6 junction is a linchpin region, where even small nucleotide substitutions grossly disrupt the catalytically-active group I intron tertiary structure, and that CYT-18 binding induces the formation of the correct structure in this region, leading to folding of the group I intron catalytic core.


Assuntos
Íntrons , Neurospora crassa/genética , Splicing de RNA , Tirosina-tRNA Ligase/genética , Bacteriófago T4/genética , Domínio Catalítico , Ácido Edético , Escherichia coli/genética , Modelos Biológicos , Mutação , Neurospora crassa/metabolismo , Conformação de Ácido Nucleico , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Supressão Genética , Tirosina-tRNA Ligase/metabolismo
10.
Science ; 289(5478): 452-7, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10903206

RESUMO

Mobile group II intron RNAs insert directly into DNA target sites and are then reverse-transcribed into genomic DNA by the associated intron-encoded protein. Target site recognition involves modifiable base-pairing interactions between the intron RNA and a >14-nucleotide region of the DNA target site, as well as fixed interactions between the protein and flanking regions. Here, we developed a highly efficient Escherichia coli genetic assay to determine detailed target site recognition rules for the Lactococcus lactis group II intron Ll.LtrB and to select introns that insert into desired target sites. Using human immunodeficiency virus-type 1 (HIV-1) proviral DNA and the human CCR5 gene as examples, we show that group II introns can be retargeted to insert efficiently into virtually any target DNA and that the retargeted introns retain activity in human cells. This work provides the practical basis for potential applications of targeted group II introns in genetic engineering, functional genomics, and gene therapy.


Assuntos
DNA/genética , Marcação de Genes , Íntrons , RNA Catalítico/genética , Pareamento de Bases , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Escherichia coli/genética , Genes pol , Terapia Genética , HIV-1/genética , Humanos , Lactococcus lactis/genética , Dados de Sequência Molecular , Provírus/genética , Receptores CCR5/genética , Recombinação Genética , Transfecção
11.
Nucleic Acids Res ; 28(7): 1514-24, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10710417

RESUMO

We characterized an unusual tRNA-like sequence that had been found inserted in suppressive variants of the mitochondrial retroplasmid of Neurospora intermedia strain Varkud. We previously identified two forms of the tRNA-like sequence, one of 64 nt (TRL-64) and the other of 78 nt (TRL-78) containing a 14-nt internal insertion in the anticodon stem at a position expected for a nuclear tRNA intron. Here, we show that TRL-78 is encoded in Varkud mitochondrial (mt)DNA within a 7 kb sequence that is not present in Neurospora crassa wild-type 74 A mtDNA. This 7-kb insertion also contains a perfectly duplicated tRNA(Trp)gene, segments of several mitochondrial plasmids and numerous GC-rich palindromic sequences that are repeated elsewhere in the mtDNA. The mtDNA-encoded copy of TRL-78 is transcribed and apparently undergoes 5'- and 3'-end processing and 3' nucleotide addition by tRNA nucleotidyl transferase to yield a discrete tRNA-sized molecule. However, the 14 nt intron-like sequence in TRL-78, which is missing in the TRL-64 form, is not spliced detectably in vivo or in vitro. Our results show that TRL-78 is an unusual tRNA-like species that could be incorporated into suppressive retroplasmids by the same reverse transcription mechanism used to incorporate mt tRNAs. The tRNA-like sequence may have been derived from an intron-containing nuclear tRNA gene or it may serve some function, like mtRNA. Our results suggest that mt tRNAs or tRNA-like species may be integrated into mtDNA via reverse transcription, analogous to SINE elements in animal cells.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Mutagênese Insercional/genética , Neurospora/genética , Plasmídeos/genética , RNA Fúngico/genética , RNA de Transferência de Triptofano/genética , Sequência de Bases , Southern Blotting , Clonagem Molecular , Primers do DNA , DNA Fúngico/genética , Desoxirribonuclease EcoRI , Variação Genética , Íntrons/genética , Dados de Sequência Molecular , Neurospora crassa/genética , Conformação de Ácido Nucleico , Mapeamento Físico do Cromossomo , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA de Transferência de Triptofano/química , RNA de Transferência de Triptofano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
12.
Genes Dev ; 14(5): 559-73, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10716944

RESUMO

Group II intron homing occurs primarily by a mechanism in which the intron RNA reverse splices into a DNA target site and is then reverse transcribed by the intron-encoded protein. The DNA target site is recognized by an RNP complex containing the intron-encoded protein and the excised intron RNA. Here, we analyzed DNA target-site requirements for the Lactococcus lactis Ll.LtrB group II intron in vitro and in vivo. Our results suggest a model similar to yeast mtDNA introns, in which the intron-encoded protein first recognizes a small number of nucleotide residues in double-stranded DNA and causes DNA unwinding, enabling the intron RNA to base-pair with the DNA for reverse splicing. Antisense-strand cleavage requires additional interactions between the protein and 3' exon. Key nucleotide residues are recognized directly by the intron-encoded protein independent of sequence context, and there is a stringent requirement for fixed spacing between target site elements recognized by the protein and RNA components of the endonuclease. Experiments with DNA substrates containing GC-clamps or "bubbles" indicate a requirement for DNA unwinding in the 3' exon but not the distal 5' exon region. Finally, by applying the target-site recognition rules, we show that the L1.LtrB intron can be modified to insert at new sites in a plasmid-borne thyA gene in Escherichia coli. This strategy should be generally applicable to retargeting group II introns and to delivering foreign sequences to specific sites in heterologous genomes.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Íntrons , Lactococcus lactis/genética , Pareamento de Bases , Sequência de Bases , DNA Antissenso/genética , DNA Antissenso/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/crescimento & desenvolvimento , Éxons , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Moldes Genéticos
13.
Mol Cell ; 4(2): 239-50, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10488339

RESUMO

Group II introns encode reverse transcriptases that promote RNA splicing (maturase activity) and then with the excised intron form a DNA endonuclease that mediates intron mobility by target DNA-primed reverse transcription (TPRT). Here, we show that the primary binding site for the maturase (LtrA) encoded by the Lactococcus lactis Ll.LtrB intron is within a region of intron domain IV that includes the start codon of the LtrA ORF. This binding is enhanced by other elements, particularly domain I and the EBS/IBS interactions, and helps position LtrA to initiate cDNA synthesis in the 3' exon as occurs during TPRT. Our results suggest how the maturase functions in RNA splicing and support the hypothesis that the reverse transcriptase coding region was derived from an independent genetic element that was inserted into a preexisting group II intron.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Íntrons , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Fases de Leitura Aberta , Splicing de RNA , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Códon de Iniciação , Escherichia coli , Éxons , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , DNA Polimerase Dirigida por RNA/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
14.
Biochemistry ; 38(28): 9069-83, 1999 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-10413481

RESUMO

Group II introns encode proteins with reverse transcriptase activity. These proteins also promote RNA splicing (maturase activity) and then, with the excised intron, form a site-specific DNA endonuclease that promotes intron mobility by reverse splicing into DNA followed by target DNA-primed reverse transcription. Here, we used an Escherichia coli expression system for the Lactococcus lactis group II intron Ll.LtrB to show that the intron-encoded protein (LtrA) alone is sufficient for maturase activity, and that RNP particles containing only the LtrA protein and excised intron RNA have site-specific DNA endonuclease and target DNA-primed reverse transcriptase activity. Detailed analysis of the splicing reaction indicates that LtrA is an intron-specific splicing factor that binds to unspliced precursor RNA with a K(d) of

Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Íntrons , Splicing de RNA , RNA Bacteriano/metabolismo , Proteínas de Bactérias/isolamento & purificação , Catálise , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Lactococcus lactis , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Proteínas de Ligação a RNA/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Cloreto de Sódio/química , Especificidade por Substrato/genética
15.
J Mol Biol ; 289(3): 473-90, 1999 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-10356323

RESUMO

Group II introns encode reverse transcriptases that function in both intron mobility and RNA splicing. The proteins bind specifically to unspliced precursor RNA to promote splicing, and then remain associated with the excised intron to form a DNA endonuclease that mediates intron mobility by target DNA-primed reverse transcription. Here, immunoblotting and UV cross-linking experiments show that the reverse transcriptase activity encoded by the yeast mtDNA group II intron aI2 is associated with an intron-encoded protein of 62 kDa (p62). p62 is bound tightly to endogenous RNAs in mitochondrial ribonucleoprotein particles, and the reverse transcriptase activity is rapidly and irreversibly lost when the protein is released from the endogenous RNAs by RNase digestion. Non-denaturing gel electrophoresis and activity assays show that the aI2 reverse transcriptase is associated predominantly with the excised intron RNA, while a smaller amount is associated with unspliced precursor RNA, as expected from the role of the protein in RNA splicing. Although the reverse transcriptase in wild-type yeast strains is bound tightly to endogenous RNAs, it is regulated so that it does not copy these RNAs unless a suitable DNA oligonucleotide primer or DNA target site is provided. Certain mutations in the intron-encoded protein or RNA circumvent this regulation and activate reverse transcription of endogenous RNAs in the absence of added primer. Although p62 is bound to unspliced precursor RNA in position to initiate cDNA synthesis in the 3' exon, the major template for target DNA-primed reverse transcription in vitro is the reverse-spliced intron RNA, as found previously for aI1. Together, our results show that binding to intron-containing RNAs stabilizes and regulates the activity of p62.


Assuntos
Mitocôndrias/genética , RNA Fúngico/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Primers do DNA , DNA Complementar/biossíntese , Éxons , Íntrons/fisiologia , Mitocôndrias/metabolismo , Mutação , Precursores de RNA/metabolismo , Splicing de RNA , RNA Fúngico/genética , DNA Polimerase Dirigida por RNA/isolamento & purificação , Ribonucleoproteínas/metabolismo , Moldes Genéticos , Transcrição Gênica , Leveduras/genética , Leveduras/metabolismo
16.
J Mol Biol ; 282(3): 505-23, 1998 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-9737919

RESUMO

The retrohoming of the yeast mtDNA intron aI1 occurs by a target DNA-primed reverse transcription (TPRT) mechanism in which the intron RNA reverse splices directly into the recipient DNA and is then copied by the intron-encoded reverse transcriptase. Here, we carried out biochemical characterization of the intron-encoded reverse transcriptase and site-specific DNA endonuclease activities required for this process. We show that the aI1 reverse transcriptase has high TPRT activity in the presence of appropriate DNA target sites, but differs from the closely related reverse transcriptase encoded by the yeast aI2 intron in being unable to use artificial substrates efficiently. Characterization of TPRT products shows that the fully reverse spliced intron RNA is an efficient template for cDNA synthesis, while reverse transcription of partially reverse spliced intron RNA is impeded by the branch point. Novel features of the aI1 reaction include a prominent open-circular product in which cDNAs are incorporated at a nick at the antisense-strand cleavage site. The aI1 endonuclease activity, which catalyzes the DNA cleavage and reverse splicing reactions, is associated with ribonucleoprotein particles containing the intron-encoded protein and the excised intron RNA. As shown for the aI2 endonuclease, both the RNA and protein components are used for DNA target site recognition, but the aI1 protein has less stringent nucleotide sequence requirements for the reverse splicing reaction. Finally, perhaps reflecting this relaxed target specificity, in vitro experiments show that aI1 can reverse splice directly into ectopic mtDNA transposition sites, consistent with the previously suggested possibility that this mechanism is used for ectopic transposition of group II introns in vivo.


Assuntos
DNA Mitocondrial/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , DNA Fúngico/genética , Desoxirribonuclease I/genética , Íntrons/genética , Splicing de RNA , DNA Polimerase Dirigida por RNA/genética , Saccharomyces cerevisiae/ultraestrutura
17.
Cell ; 94(4): 451-62, 1998 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-9727488

RESUMO

The mobile group II intron of Lactococcus lactis, Ll.LtrB, provides the opportunity to analyze the homing pathway in genetically tractable bacterial systems. Here, we show that Ll.LtrB mobility occurs by an RNA-based retrohoming mechanism in both Escherichia coli and L. lactis. Surprisingly, retrohoming occurs efficiently in the absence of RecA function, with a relaxed requirement for flanking exon homology and without coconversion of exon markers. These results lead to a model for bacterial retrohoming in which the intron integrates into recipient DNA by complete reverse splicing and serves as the template for cDNA synthesis. The retrohoming reaction is completed in unprecedented fashion by a DNA repair event that is independent of homologous recombination between the alleles. Thus, Ll.LtrB has many features of retrotransposons, with practical and evolutionary implications.


Assuntos
Elementos de DNA Transponíveis , DNA Bacteriano/genética , Íntrons , RNA Bacteriano/genética , RNA Catalítico/genética , DNA Polimerase Dirigida por RNA , Recombinação Genética , Retroelementos/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Lactococcus lactis/genética , Modelos Genéticos , Recombinases Rec A/metabolismo
18.
Genes Dev ; 11(21): 2910-24, 1997 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9353259

RESUMO

The Lactococcus lactis group II intron Ll.ltrB is similar to mobile yeast mtDNA group II introns, which encode reverse transcriptase, RNA maturase, and DNA endonuclease activities for site-specific DNA insertion. Here, we show that the Lactococcal intron can be expressed and spliced efficiently in Escherichia coli. The intron-encoded protein LtrA has reverse transcriptase and RNA maturase activities, with the latter activity shown both in vivo and in vitro, a first for any group II intron-encoded protein. As for the yeast mtDNA introns, the DNA endonuclease activity of the Lactococcal intron is associated with RNP particles containing both the intron-encoded protein and the excised intron RNA. Also, the intron RNA cleaves the sense-strand of the recipient DNA by a reverse splicing reaction, whereas the intron-encoded protein cleaves the antisense strand. The Lactococcal intron endonuclease can be obtained in large quantities by coexpression of the LtrA protein with the intron RNA in E. coli or reconstituted in vitro by incubating the expressed LtrA protein with in vitro-synthesized intron RNA. Furthermore, the specificity of the endonuclease and reverse splicing reactions can be changed predictably by modifying the RNA component. Expression in E. coli facilitates the use of group II introns for the targeting of specific foreign sequences to a desired site in DNA.


Assuntos
Proteínas de Bactérias/genética , Endodesoxirribonucleases/genética , Endorribonucleases/genética , Íntrons , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Nucleotidiltransferases/genética , DNA Polimerase Dirigida por RNA/genética , Proteínas de Bactérias/biossíntese , Sequência de Bases , DNA Mitocondrial/química , DNA Mitocondrial/genética , Endodesoxirribonucleases/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Éxons , Nucleotidiltransferases/metabolismo , Oligodesoxirribonucleotídeos , Plasmídeos , Splicing de RNA , DNA Polimerase Dirigida por RNA/metabolismo , Saccharomyces cerevisiae/genética , Especificidade por Substrato
19.
Mol Cell Biol ; 17(8): 4526-35, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9234710

RESUMO

The Mauriceville retroplasmid of Neurospora mitochondria encodes a novel reverse transcriptase that initiates cDNA synthesis de novo (i.e., without a primer) at the 3' CCA of the plasmid transcript's 3' tRNA-like structure (H. Wang and A. M. Lambowitz, Cell 75:1071-1081, 1993). Here, we show that the plasmid reverse transcriptase also initiates cDNA synthesis de novo at the 3' end of tRNAs, leading to synthesis of a full-length cDNA copy of the tRNA. The use of tRNA templates in vivo was suggested previously by the structure of suppressive mutant plasmids that have incorporated mitochondrial tRNA sequences (R. A. Akins, R. L. Kelley, and A. M. Lambowitz, Cell 47:505-516, 1986). The in vitro experiments show that efficient de novo initiation on tRNA templates requires an unpaired 3' CCA and occurs predominantly opposite position C-2 of the 3' CCA sequence, the same position as in the plasmid transcript. In other reactions, the plasmid reverse transcriptase synthesizes cDNA dimers by template switching between two tRNA templates and initiates at an internal position in a tRNA by using the 3' end of the tRNA as a primer. Finally, we show that template switching between the tRNA and the plasmid transcript in vitro gives rise to hybrid cDNAs of the type predicted to be intermediates in the generation of the suppressive mutant plasmids. The ability of the plasmid reverse transcriptase to initiate at the 3' end of tRNAs presumably reflects the recognition of structural features similar to those of the 3' tRNA-like structure of the plasmid transcript. The recognition of tRNAs or tRNA-like structures as templates for cDNA synthesis may be characteristic of primitive reverse transcriptases that evolved from RNA-dependent RNA polymerases.


Assuntos
DNA Complementar/biossíntese , DNA Fúngico/biossíntese , Neurospora crassa/enzimologia , RNA de Transferência de Tirosina/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Clonagem Molecular , Modelos Genéticos , Mutação , Neurospora crassa/genética , Plasmídeos/genética , RNA de Transferência de Triptofano/genética , RNA de Transferência de Triptofano/metabolismo , RNA de Transferência de Tirosina/genética , Análise de Sequência de DNA , Moldes Genéticos
20.
J Mol Biol ; 271(3): 311-32, 1997 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-9268661

RESUMO

The Mauriceville mitochondrial retroplasmid of Neurospora encodes a novel reverse transcriptase that initiates cDNA synthesis at a 3' tRNA-like structure of the plasmid transcript, either de novo (i.e. without a primer) or by using the 3' OH group of a DNA primer. Both the de novo and primer-mediated initiations involve recognition of structural features at the 3' end of the retroplasmid transcript, which ends with a 3' CCACCA. Here, detailed biochemical characterization of the retroplasmid reverse transcriptase shows that the 3' CCA of the plasmid transcript is the major structural feature recognized by the reverse transcriptase for both the de novo and primer-mediated initiations. Complementarity between the DNA primer and RNA template is not required for the primer-mediated initiation, although short (1 to 3 nt) base-pairing interactions can influence both the efficiency and site of initiation near the 3' end of the transcript. Single nucleotide changes in the 3' CCA lead to less efficient initiation in the upstream CCA with an increased propensity to add extra "non-coded" nucleotides to the 5' end of the cDNA during de novo initiation or to the 3' end of the primer during primer-mediated initiation. Secondary structure features upstream of the 3' CCA also influence the efficiency of initiation, but are not stringently required in vitro. Finally, we find that the retroplasmid reverse transcriptase does not efficiently use DNA primers that are base-paired to internal positions in the RNA template, nor does it use analogs of natural substrates used by non-long terminal repeat retrotransposon or retroviral reverse transcriptases. Our results indicate that the retroplasmid reverse transcriptase is uniquely adapted to initiate cDNA synthesis by recognizing a 3' CCA sequence. The ability to recognize a specific template sequence is common for RNA polymerases, but unprecedented for a reverse transcriptase.


Assuntos
Primers do DNA , DNA Complementar/biossíntese , Neurospora crassa/genética , Plasmídeos , DNA Polimerase Dirigida por RNA/metabolismo , Composição de Bases , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Conformação de Ácido Nucleico , RNA Fúngico , DNA Polimerase Dirigida por RNA/genética , Sequências Reguladoras de Ácido Nucleico , Retroelementos , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...